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Abstract. This paper deals with portfolio efficiency testing with respect to
various criteria. Basically, two approaches can be employed. If expected utility
approach is considered one can test portfolio efficiency with respect to stochas-
tic dominance relation. We focus on the second-order stochastic dominance
portfolio efficiency that allows for risk averse decision makers. Alternatively,
portfolio efficiency with respect to mean-risk criteria is analyzed, when con-
sidering the most favorite risk measures (variance, semivariance, value at risk,
conditional value at risk). We assume discrete distribution of monthly returns.
As the basic assets, we consider ten representative US industry portfolios and
a riskfree asset. For all these efficiency approaches we test more than forty
thousand portfolios from a regular grid and we identify sets of efficient portfo-
lios. We compare these sets and corresponding efficient frontiers between each
other in classical mean-variance space.
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1 Introduction

The classical portfolio efficiency analysis is based on well-known mean-variance criteria introduced already
in 1952 by Harry Markowitz (see [10]). Since that time, many improvements have been proposed and
implemented. The new risk measures, such as semivariance [11], Value at Risk [4] (VaR) or Conditional
Value at Risk [13] (CVaR) where proposed and analysed. These alternative measures model the risk of
investments in a more sophisticated way, focusing more on the investments losses.

Stochastic dominance (SD) is another appealing approach to analyzing investments and portfolio
choice problems. Stochastic dominance relations offer an approach that effectively considers the entire
return distribution rather than a finite set of moments. Assuming risk averse investors, we limit our
attention to second-order stochastic dominance relation. We say that portfolio λ dominates portfolio τ
with respect to second-order stochastic dominance if expected utility of λ is not lower than expected
utility of τ for all concave utility functions. Put differently, if portfolio λ dominates portfolio τ with
respect to second-order stochastic dominance then no risk averse investor prefers τ to λ. The more
general notion of first-order portfolio efficiency was discussed in [8] and [7].

In the last decade, several portfolio efficiency tests with respect to second-order stochastic dominance
were developed. First test, based on the representative set of utility functions, was developed in 2003
[12]. A year later, another test using majorization theorem for dual stochastic dominance approach were
introduced, see [8]. Finally, [6] presents a test formulated in terms of CVaRs.

The aim of this paper is to analyze the efficiency of portfolios with respect to mean-risk criteria and
empirically compare it with SSD portfolio efficiency. We consider 2001 - 2010 period of monthly returns
of ten representative US industry portfolios and a riskfree asset. For this data set, we construct more
than 40 000 portfolios from a regular grid. For each portfolio, we test its efficiency with respect to mean-
risk criteria and with respect to SSD criterion. Finally, we construct and compare the empirical efficient
frontiers and sets of efficient portfolios.
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The remainder of this paper is structured as follows. Section 2 introduces basic definitions of second-
order stochastic dominance relation and portfolio efficiency with respect to this criterion. Section 3
presents mean-risk efficiency algorithms (tests) in terms of mathematical programming, when variance,
semivariance, VaR and CVaR are employed. It is followed by an empirical study where we compare the
corresponding efficient sets and frontiers. Section 5 summarizes and concludes the paper.

2 Portfolio efficiency with respect to second-order stochastic dominance re-
lation

We consider a random vector r = (r1, r2, . . . , rN ) of returns of N assets with a discrete probability
distribution described by T equiprobable scenarios. The returns of the assets for the various scenarios
are given by

X =


x1

x2

...
xT


where xt = (xt1, x

t
2, . . . , x

t
N ) is the t-th row of matrix X representing the assets returns along t-th

scenario. We assume that the decision maker may also combine the alternatives into a portfolio. We will
use λ = (λ1, λ2, ..., λN )T for a vector of portfolio weights and Xλ represents returns of portfolio λ. The
portfolio possibilities are given by a simplex

Λ = {λ ∈ RN |1′λ = 1, λj ≥ 0, j = 1, 2, . . . , N},

which arises as the relevant case if we exclude short sales and impose a budget restriction. Moreover, the
tested portfolio is denoted by τ .

Following [9] and references therein, portfolio λ dominates portfolio τ with respect to second-order
stochastic dominance (λ �SSD τ ) if Eu(rλ) ≥ Eu(rτ ) for all non-decreasing and concave utility functions
with strict inequality for at least one such utility function. Alternatively, one can consider as a definition
of this relation some of its necessary and sufficient conditions summarized in, for example, [5]. In any
case, if portfolio λ dominates portfolio τ with respect to second-order stochastic dominance then every
risk averse decision maker prefers λ to τ or is indifferent between them.

Following [12], [8] and [6], we define the efficiency of a given portfolio with respect to second-order
stochastic dominance relative to all portfolios that can be created from a considered set of assets.

Definition 1. A portfolio τ is SSD inefficient if there exists portfolio λ ∈ Λ such that λ dominates τ
by SSD. Otherwise, the portfolio τ is SSD efficient.

Since its relation to CVaR (one of the considered risk measure), we choose the portfolio efficiency test
developed in [6]. Let αk = k/T, k ∈ K = {0, 1, . . . , T − 1}. Consider the following linear program:

D∗(τ ) = max
Dk,λn,bk,wt

k

T∑
k=1

Dk

s.t. CVaR k−1
T

(−r′τ )− bk −
1

(1− k−1
T )T

T∑
t=1

wtk ≥ Dk, k ∈ K

wtk + xtλ ≥ −bk, t, k ∈ K
wtk ≥ 0, t, k ∈ K
Dk ≥ 0, k ∈ K
λ ∈ Λ.

The optimal objective value D∗(τ ) can be seen as a measure of SSD inefficiency of portfolio τ and
[6] uses it for the portfolio efficiency testing as follows.

Theorem 1. If D∗(τ ) > 0 then τ is SSD inefficient and λ∗ �SSD τ . Otherwise, D∗(τ ) = 0 and τ is
SSD efficient.
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3 Portfolio efficiency with respect to mean-risk criteria

The classical optimization task which leads to mean-risk efficient portfolios can be written as:

min
λ

riskλ

s. t. meanλ ≥ meane
λ ∈ Λ,

(1)

where riskλ and meanλ represent risk and mean return of portfolio λ, respectively, meane is the minimal
required expected return.

Definition 2. A portfolio τ is mean-risk inefficient if there exists portfolio λ satisfying riskλ ≤ riskτ

and meanλ ≥ meanτ with at least one strict inequality. Otherwise, portfolio τ is mean-risk efficient.

Since we want to test the efficiency of portfolio τ with respect to mean-risk criterion we reformulate
(1) in the following way:

ξ(τ ) = min
λ,sm,sr

sm + sr

s. t. meanλ −meanτ ≥ sm
riskτ − riskλ ≥ sr
λ ∈ Λ
sm, sr ≥ 0,

(2)

where ξ(τ ) can be understood as a measure of mean-risk inefficiency that is composed from possible
improvements in both mean and risk. These improvements are represented by slack variables sm and sr.

Theorem 2. If ξ(τ ) > 0 then τ is mean-risk inefficient. Otherwise, ξ(τ ) = 0 and τ is mean-risk
efficient.

In all mean-risk efficiency tests, we will use meanλ = 1
T

∑T
t=1 xtλ and meanτ = 1

T

∑T
t=1 xtτ . To

get the test for mean-variance efficiency, we apply rλ = λ′V λ and rτ = τ ′V τ to (2) where V is the
covariance matrix of asset returns. In the semivariance case, we use variables zt corresponding to returns
of portfolio τ that are smaller than meanτ . The general test (2) is modified as follows:

ξ(τ ) = min
λ,sm,sr,zt

sm + sr

s. t. meanλ −meanτ ≥ sm

semivarianceτ −
1
T

T∑
t=1

(
zt
)2 ≥ sr

zt ≥ −xtλ +meanλ, t = 1, .., T

zt ≥ 0, t = 1, .., T
λ ∈ Λ
sm, sr ≥ 0.

In the case of VaR we have to employ integer variables δt, what leads to more computationally
demanding problem:

ξ(τ ) = min
ν,λ,δt,sm,sr

sm + sr

s. t. meanλ −meanτ ≥ sm
VaRτ − ν ≥ sr
− xtλ ≤ ν +Kδt, t = 1, .., T
T∑
t=1

δt = b(1− α)T c

δt ∈ {0, 1} , t = 1, .., T
λ ∈ Λ
sm, sr ≥ 0,
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where bxc = max {n ∈ N0, n < x} for x ∈ R+, and K is sufficiently large constant, for example, K ≥
max
t,j

xtj −min
t,j

xtj . When CVaR is chosen as the risk measure, we get the following linear program:

ξ(τ ) = min
λ,sm,sr,zt,a

sm + sr

s. t. meanλ −meanτ ≥ sm

CVaRτ − a−
1

(1− α)T

T∑
t=1

zt ≥ sr

zt ≥ −xtλ− a, t = 1, .., T

zt ≥ 0, t = 1, .., T
λ ∈ Λ
sm, sr ≥ 0.

4 Empirical application

We consider monthly returns of ten US representative industry portfolios and a risk free asset which
represent N = 11 basic assets. The returns can be found in data library of Kenneth French [14] and
we proxy risk free asset by CRSP index. We consider ten years period 2001 - 2010, that is T = 120
historical scenarios. The Table 1 shows descriptive statistics of the data set. We consider a regular grid

mean st. dev. min max skewness
Non-durables 0.622 3.583 -12.980 9.310 -0.622
Durables 0.689 8.515 -32.790 43.090 0.462
Manufactory 0.778 5.525 -20.840 17.950 -0.664
Energy 1.038 5.991 -17.020 19.160 -0.320
HiTech 0.310 7.879 -26.230 19.400 -0.385
Telecom 0.116 5.956 -15.460 21.380 0.027
Shops 0.531 4.773 -15.060 12.310 -0.390
Health 0.097 3.968 -10.930 9.220 -0.391
Utilities 0.519 4.487 -12.480 10.200 -0.924
Other 0.157 5.594 -19.560 16.280 -0.619
Riskfree 0.180 0 0.180 0.180 0

Table 1: The basic descriptive statistics.

on feasibility set Λ with step size 1
8 and we create 43 758 portfolios from these assets. Specifically, each

element of each created portfolio λ is equal to one of the following numbers: 0, 1
8 ,

2
8 , ..., 1 such that the

elements of each portfolio sum up to 1, in order to satisfy the conditions of set Λ.

Firstly, applying Theorem 1, we test SSD efficiency of all considered portfolios. We find only 0,11%
SSD efficient portfolios and Figure 1 (left) presents the set of SSD efficient portfolios in the classical
mean-variance space.

Secondly, we identify a set of mean-variance, mean-semivariance, mean-VaR and mean-CVaR efficient
portfolios using tests in Section 3. Perhaps surprisingly, the set of mean-semivariance efficient portfo-
lios coincides with that for mean-CVaR criteria. For all risk measures we construct efficient frontiers:
mean-variance frontier (solid line), mean-semivariance and mean-CVaR frontier (dashed line), mean-VaR
frontier (dashdotted line) and we compare the results in Figure 1 (right). These frontiers are only empir-
ical ones, that is, they are constructed only from portfolios on the grid. For large values of mean (larger
than 0.88%), the mean-variance frontier coincides with mean-semivariance and mean-CVaR ones.

Finally, we compare the efficiency sets among each other. We find in our study that mean-semivariance
efficiency is equivalent to mean-CVaR efficiency. Moreover, each of these efficient portfolios is also efficient
with respect to mean-variance criteria. Finally, all mean-risk efficient portfolios, except of mean-VaR
efficient ones, are classified as SSD efficient as well. Figure 2 summarizes this efficiency sets comparison.
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Figure 1: Empirical set of SSD efficient portfolios (left) and mean-risk efficiency frontiers (right).

 SSD efficient 

Mean-variance efficient 

Mean-CVaR efficient 

Mean-VaR 

efficient 

Figure 2: Efficient portfolio sets, mean-CVaR efficient set coincide with mean-semivariance one.
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5 Conclusion

This paper compares the several portfolio efficiency sets when using stochastic dominance and mean-risk
criteria. We constructed and compared these sets and corresponding efficient frontiers. We found that
SSD efficiency set is larger than any mean-risk efficiency set. This is not a surprising result because SSD
efficiency test can be seen as T -criteria problem while any mean-risk efficiency test is only two-criteria
problem.

For future research, this study can be improved in various ways. For example, longer historical data
can be used. In addition, one can consider the portfolio efficiency in a more robust way as it was done
in [5] and [2] using, for example, contamination techniques discussed e.g. in [1]. Alternatively, one
can apply fuzzy approach recently used in [3]. Unfortunately, all these improvements would lead to
more computationally demanding efficiency tests what requires much better hardware equipment than is
currently available.

Acknowledgements

The research was partly supported by the Czech Science Foundation (grant P402/10/1610).

References
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[3] Holčapek, M. and Tichý, T.: A probability density function estimation using F-transform, Kyber-
netika, 46 (3), (2010), 447–458.

[4] J.P. Morgan Risk Metrics: Technical Document, 4th Edition, Morgan Guaranty Trust Company,
New York, 1995.

[5] Kopa, M.: Measuring of second-order stochastic dominance portfolio efficiency, Kybernetika, 46 (3),
(2010), 488–500.

[6] Kopa, M. and Chovanec, P.: A Second-Order Stochastic Dominance Portfolio Efficiency Measure,
Kybernetika, 44 (2), (2008), 243–258.

[7] Kopa, M. and Post, T.: A portfolio optimality test based on the first-order stochastic dominance
criterion. Journal of Financial and Quantitative Analysis, 44 (5), (2009), 1103–1124.

[8] Kuosmanen, T.: Efficient diversification according to stochastic dominance criteria, Management
Science, 50 (10), (2004), 1390–1406.

[9] Levy, H.: Stochastic Dominance: Investment Decision Making Under Uncertainty. Second edition.
Springer Science, New York 2006.

[10] Markowitz, H. M.: Portfolio Selection, The Journal of Finance, 7 (1), (1952), 77–91.

[11] Markowitz, H. M.: Portfolio Selection: Efficient Diversification of Investments, John Wiley & Sons,
New York 1959.

[12] Post, T.: Empirical tests for stochastic dominance efficiency, Journal of Finance, 58, (2003), 1905–
1932.

[13] Rockafellar, R. T. and Uryasev, S.: Conditional Value-at-Risk for General Loss Distributions, Journal
of Banking and Finance, 26 (7), (2002), 1443–1471.

[14] http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html#Research

356


